Year of publication: 
Climate Dynamics
Commonly termed “added value”, the additional regional details gained by high-resolution regional climate models (RCMs) over the coarser resolution reanalysis driving data are often indistinguishable at the 0.44° grid mesh computationally affordable large CORDEX domains. In an attempt to highlight the benefits of finer resolutions to study the RCM added value, five North American weather phenomena are evaluated in RCM hindcast simulations using grid meshes of 0.44°, 0.22° and 0.11° with available observations. The results show that the orographic precipitation on the west coast of North America is enhanced and more realistic, with two distinct rain bands in the finer resolution simulation. The spatial distribution of precipitation in August and the high frequency of summer precipitation extremes over southwestern United States reveal that the North American monsoon is improved with increasing resolution. Only the finer RCM simulation shows skill at producing snowbelts around the Great Lakes by capturing lake-effect snow. A comparison of wind roses in the St. Lawrence River Valley indicates that only the finer RCM simulation is able to reproduce wind channeling by resolving complex orography. Finally, the simulation of the summer land-sea breezes by the RCM simulations leads to added value in the diurnal cycle of precipitation over the Florida peninsula and the Caribbean islands. Overall, the almost systematic improvements of the finer resolution simulations suggest that higher resolutions, only computationally affordable over smaller domains, might get a higher priority to promote RCM added value.